Biology Chapter 9

Microbiology Part 1
Kingdom Monera and the viruses

9A – Bacteria and Similar Organisms

Read p. 237

Two phyla:
- Phylum Schizomycophyta: bacteria and similar organisms
- Phylum Cyanophyta: blue-green algae

Characteristics of the Kingdom Monera:
(See p. 237)
- Key characteristic – procaryotic (lack organized nuclei and membrane bound organelles)
- unicellular or colonial
- most have cell walls and slime coats
- most are heterotrophic (saprophytes, parasites)
- some are photosynthetic (some are both hetero. and auto.)
- some are chemosynthetic
- many are nonmotile but some are mobile

Phylum Schizomycophyta

The Bacteria

Read pp. 237-238

Uses of bacteria:
- Key role: decomposer (break down dead organisms into compounds that can be used by living organisms – recycling the chemicals of nature.)
- cause disease
- spoil food
- convert nitrogen from the air into usable forms (nitrogen-fixing bacteria)
- aid in digestion in certain organisms (including man)
- commercial uses: forming cheese
- making vinegar
- making butter and buttermilk
- retting flax
making sauerkraut

tanning leather

forming silage

Structure of Bacteria

(see page 240)

prokaryotic cell

instead of nucleus - nuclear material clumped in the middle of the cell forms a single, circular DNA molecule

All bacteria except one group have a **cell wall** (protects the cell and helps to maintain a water balance with the environment)

For additional protection, some are equipped with a **slime layer**

Others are protected by a tough layer called a **capsule** (made of a gummy substance)

protects the cell from drying out during temporary dry periods and prevents certain substances from entering the cell

Colony of bacteria often produces a thick capsule called a **sheath**

gives it a moist, shiny appearance and a slimy feel

Read page 240

Basic bacterial shape

Three basic shapes of bacterial cells:

(use the shapes to classify the organism)

1. **Coccus** (plural Cocci) - spherical-shaped bacteria
 usually grow in clusters
2. **Bacillus** (plural Bacilli) - rod-shaped bacteria
3. **Spirillum** (plural Spirilla) - spiral-shaped bacteria

Pathogens - a disease-causing microorganism

Common Pathogenic Cocci:

Staphylococcus aureus - causes food poisonings and a variety of skin disorders

Streptococcus pneumoniae - the chief microbe responsible for bacterial pneumonia

Streptococcus pyogenes - causes scarlet fever and strep throat

staphylo - means "a bunch of grapes" in Greek

(Staphylococci generally occur in clumps resembling bunches
Strepto - means "turned" or "twisted" in Greek
(Streptococci generally occur in chains)

Other diseases caused by pathogenic cocci: boils
 carbuncles
 gonorrhea
 meningitis

How may cocci bacteria be found?
 single cell: coccus
 in pairs: diplococci
 in chains: streptococci
 in clusters: staphylococci

Common Pathogenic Bacilli:

species of the genus *Mycobacterium* causes: leprosy & TB
other diseases: botulism, diphtheria, bubonic plague,
tetanus, typhoid fever

How may bacilli bacteria be found?
 single - bacillus
 in pairs - diplobacilli
 in chains - streptobacilli

Common Pathogenic Spirilla:

cause cholera and syphilis
only exists in single cells
include several large, corkscrew-shaped, decay-producing
bacteria

Read page 239

Bacterial Size

extremely small - must be magnified 1,000X to be clearly seen
1500 rod-shaped bacteria arranged end-to-end might stretch
across the head of a pin
the period at the end of a sentence - 5,000 bacteria lined
up across it
if a single spherical bacterium were magnified to the size
of a tennis ball, a man magnified to the same extent
would stand about 25 miles tall
the weight of a human red blood cell is 100X that of an average
bacterium

in spite of the small size of individual bacterial cells, colonies of bacteria can often be seen as tiny colored patches on certain materials

Bacterial Movement

Two common methods of bacterial movement:
1. flagella
2. **brownian movement** - vibrations as water molecules bump into them.

all bacteria are small enough to be easily carried along with even the slightest current

Bacterial Growth

Read page 241
Read pages 244-245

Conditions for bacterial growth:
1. moisture
2. temperature
3. pH
4. nutrition
5. darkness

Bacterial Reproduction

Asexual:

Binary fission - one cell splits into two cells (daughter cells)

Reaction to unfavorable conditions: (like heat, cold, dryness) many bacteria become dormant to protect themselves
1. Endospore - the resting, or dormant stage of certain bacteria which is resistant to harsh environmental conditions.
 a. allow bacteria to survive extremely long periods of
unfavorable conditions
b. difficult to kill
c. most pathogenic bacteria are not able to form these:
good thing because certain types of diseases would
be extremely difficult to control
d. not a method of reproduction - a method of
continuing the species
2. Reduce metabolism - activities decrease

Sexual:
never results in offspring (doesn't increase # of bacteria)
two forms: conjugation & transformation
1. Conjugation - a temporary union of two organisms or
cells for the exchange of nuclear material
 In conjugation (genetic transfer), a
 conjugation tube forms from the "male" to the
bacterium lacking the F factor, the "female."
 Replicated F factors pass from male to
 female, the donor bacterium giving the traits
to the receiver bacterium. (Has made the
femal bacterium into the male bacterium.)
Example - Escherichia coli (E. coli)
2. Transformation - living cells absorb the DNA of other
bacteria
 (DNA from one bacterium is absorbed into another
bacterium)
Example - Streptococcus pneumoniae

Bacterial Nutrition

I. Autotrophs - able to produce their own food

 A. Photosynthetic

 bacterial photosynthesis
 bacteriochlorophyll - purple, red, brown
 obtain hydrogen from hydrogen sulfide
 oxygen is usually not a product
 plant photosynthesis
 chlorophyll a - green
 obtain hydrogen from water
 oxygen is a product
B. **Chemosynthetic**
produces food by using iron, sulfur, and nitrogen compounds instead of chlorophyll and sunlight

II. **Heterotrophs** - unable to make their own food
Most bacteria are heterotrophic.
Most bacteria are saprophytes.

A. **Parasitic** - feeding on a living host
B. **Saprophytic** - feeding on dead organic matter

Bacterial Respiration

Three types:
1. **Obligate aerobes** - bacteria that require atmospheric oxygen for respiration
 Example: diptheria, TB, and cholera
2. **Obligate anaerobes** - cannot grow in the presence of atmospheric oxygen
 Example: tetanus and botulism
 Anaerobic bacteria obtain their oxygen from the foods they eat. As these bacteria digest food, they may produce toxins as waste products. Botulism, a very dangerous type of food poisoning, is produced by anaerobic bacteria. Tetanus, sometimes referred to as lockjaw, is another disease which is caused by anaerobic bacteria. The bacteria enter the body through a deep puncture wound and become active deep in the flesh where no oxygen is present.
3. **Facultative anaerobes** - grow best as aerobes but may grow as anaerobes
 Examples: E. coli, those that cause typhoid and scarlet fever

Controlling Bacteria

pathogen - an organism which causes disease

two basic ways of controlling bacteria in our food:
(see page 245)
1. Destroy all the bacteria present and seal the food in a container - canning
2. Place the foods in an environment that will not permit bacteria to grow or at least not grow as rapidly – refrigeration, freezing, dehydration, salt-curing, chemical preservatives, radiation

Louis Pasteur – first devised the process of pasteurization

Read pages 245-246

Three other smaller groups of organisms in the phylum Schizomycophyta:

1. **Mycoplasmas** - a bacterialike organism that lacks a cell wall
 found in human mouth, nasal passages, and urinary tract
 can cause atypical pneumonia, arthritis, and infections of the urinary tract

2. **Rickettsias** - an obligate parasite; between bacteria and viruses in size. intracellular parasites (live inside cells)
 found by Dr. Howard T. Ricketts
 causes Rocky Mountain Spotted Fever and Typhus fever
 Insect (human body lice, fleas) or ticks transmit most rickettsial diseases
 Through the years rickettsial diseases have claimed the most human lives

3. **Spirochetes** - a group of spiral-shaped bacterialike organisms
 normally inhabit the mouths, intestines, and reproductive organs of humans and animals
 cause: yaws, infectious jaundice, syphilis, and relapsing fever

Phylum Cyanophyta

The Blue-green algae
cellular structure: procaryotic, have a cell wall, produce slimy sheath
movement: float and some slide along
reproduction: fission, some form spores none are known to reproduce sexually
cellular organization: few are unicellular most colonial (form *filaments* - long, thin strands of similar cells)
color: all contain chlorophyll a many contain a blue pigment (phycocyanin) - appear bluish green

Read page 249

9B - Viruses

Read or review *Jenner vaccination* account p.250

Dr. Edward Jenner smallpox; cowpox
Mrs. Phipps son James first vaccination May 14, 1796

Jenner was not the first person to propose this method of developing immunity, but he was the first "scientist" to actually experiment with it.

His methods were not popular; cartoons showed people with cows growing out of them at the places they were vaccinated.

Immunity- the ability to resist infection or to overcome the effects of infection.

Vaccination- (not a cure for a disease) a method of developing an immunity by exposing a person to either a weakened form of the disease or a similar disease.

1892 **Dimitri Iwanowski** (Russian biologist) worked with tobacco mosaic- a disease which causes light green patches on tobacco leaves and stunts leaf growth.
He assumed that the fluid containing (TMV- tobacco mosaic virus) contained a poison from a bacterium. The term "virus" (is the Latin word for poison) was given to denote this "poison".

Middle 1930's **Dr. Wendell Stanley**, working at the Rockerfeller Institute, isolated the actual virus substance (TMV) 1946 awarded the Nobel Prize in Chemistry for it.

Viral diseases are probably the most common of all diseases. Most of us contract at least one viral infection each year - the flu, an intestinal "bug", or a cold.
What is a virus?

A protein particle that shows some characteristics of a living thing but only when it is inside a living cell. When outside a host cell, viruses assume a crystalline structure.

Structure of virus?

Consist of a nucleic acid molecule enclosed in a protein (a strand of DNA or RNA and a protein coat). Essentially viruses are chromosomes. An active virus may be comparable to a much simplified cell nucleus.

A viral disease results when a virus enters a host cell and forces the individual cell to start producing copies of a virus molecule. When it has produced all the virus molecules it can, the cell bursts open and scatters the new virus into the surrounding environment. Of course this usually results in the death of the host cell and the infection of many other near-by cells.

This is known as the Lytic cycle: (see pp. 252-253)

1) The virus attaches itself to the cell.
2) The DNA (or RNA) of the virus enters the cell.
3) The DNA (or RNA) begins to transcribe and replicate.
4) The cell begins to manufacture virus proteins.
5) Virus particles from within the cell.
6) The cell bursts, releasing the newly-formed virus particles.

A virus is not able to affect every cell. (Example TMV does not affect humans)

Virulence- the ability of a virus to affect cells.
If the virus does not affect a certain cell: non-virulent (Ex. TMV nonvirulent to human cells)

Not all viruses begin to destroy the cell immediately after entering it.

Latent virus- enters a cell and may remain inactive for long periods of time.

Temperate phage (faj)- a virus which enters a cell and replicates within it but may never destroy the cell. It attaches to the bacterial chromosome.

When a certain stimulates (such as ultraviolet radiation, certain
chemicals, or some unknown agent) is applied, the phage becomes virulent, enters the lytic cycle, and destroys the bacterium. Example: Herpes simplex (see pp. 253-254)

Read Various viruses p.254

Viruses dead or alive?

<table>
<thead>
<tr>
<th>Dead (outside cells)</th>
<th>Alive (inside cell)</th>
</tr>
</thead>
<tbody>
<tr>
<td>can be isolated in crystal form</td>
<td>metabolism</td>
</tr>
<tr>
<td>do not have a cellular structure</td>
<td>growth</td>
</tr>
<tr>
<td>do not use food</td>
<td>reproduction</td>
</tr>
<tr>
<td>no growth</td>
<td></td>
</tr>
<tr>
<td>no metabolism</td>
<td></td>
</tr>
<tr>
<td>no reproduction</td>
<td></td>
</tr>
</tbody>
</table>

9C – Diseases and Disorders

There was no disease in the original creation.

Diseases and disorders are a part of the curse.

Why does the Lord permit a person to suffer from a disease or a disorder:

Diseases or disorders in a persons life may result in:

- Salvation
- Patience
- Humility before God
- Fellowship with God
- Trust
- Sympathy with, and comfort others who are suffering
 "God did not comfort us to make us comfortable, but to make us comforters."

Punishment for sin

"God is not the author of all events, but He is the master of all events."

God did not cause the disorders or diseases (Remember Job) He allowed it.

God can turn it around and use it for good.

Purpose of everything that happens in our life - conforms us to the image of Christ.

INFECTION DISEASES
Disease - any condition which interferes with the normal functioning of the body.

Types of diseases

(1) **INFECTIONOUS** - caused by invading microorganisms which destroy living cells.

(2) **NONINFECTIONOUS** - brought about by conditions not involving pathogenic microorganisms, such as: breakdown of the body's tissue, hormonal changes, genetic and developmental problems and poor nutrition.

Invading microorganisms - *Pathogen*,

- 2 important types:
 - bacteria
 - viruses

Other pathogens:

- Mycoplasmas
- Protoen
- Rickettsias
- Spirochetes
- Algae
- Fungi
- Worms

Where they grow and replace - *host*

Read page 257

Germ theory of Disease

Approximately 100 years ago *Louis Pasteur*, the famous French scientist, observed that bacteria sometimes ruined wine by turning it to vinegar. This observation led Pasteur to wonder if bacteria might not also have a detrimental effect upon the body.

At that time no one knew what caused diseases, and Pasteur wondered if bacteria might not be a cause. Eventually, he formulated the germ concept of disease.

Germ theory of disease: every infectious disease is caused by a specific germ. (many diseases are caused and spread by specific pathogens)

It's very difficult to prove this theory.

About the same time that Pasteur was doing his experiments, a German physician named *Robert Koch* (coke) was experimenting with the bacteria he suspected of causing anthrax, a disease which was
a great killer of cattle and sheep. While experimenting with anthrax bacteria, Koch developed the techniques scientists needed in order to study bacteria safely. We honor Koch for his pioneering work by calling him the first great bacteriologist (a scientist who studies bacteria).

Koch formulated a procedure for determining if a particular bacterium is the cause of a specific disease.

His procedure has come to be known as Koch's Postulates:
1. Isolate the suspected pathogen in each diseased animal.
2. Grow the pathogen in a pure culture and identify it.
3. Inject pathogens from the culture into healthy animals to see if they get the disease.
4. Find and identify the same pathogen in these diseased animals.
5. Repeat the process using the suspected pathogen obtained in step 4.

Koch proved Pasteur's germ concept of disease. Medical scientists today use Koch's postulates in their own studies of disease and disease pathogens.

Koch is called "the father of bacteriological techniques"

Koch received the Nobel Prize in 1905.

The Pathogens of Disease

incubation period - the time between contracting (being exposed to) the disease and the appearance of the first symptoms.

Two ways a pathogen can affect its host:
1. Tissue destruction - pathogens obtain nutrition from the host's body tissues, causing destruction of these tissues
2. Toxin formation - bacteria produce poisonous substances which kill cells of the host's body

Two basic types of toxins:
1. Exotoxins (soluble toxins) - products secreted by the pathogen that diffuse from the living pathogenic cell into the surrounding tissue.
 (Examples: tetanus, diphtheria, Rheumatic fever bacteria)
2. Endotoxins - remain in the pathogen and are released when the pathogen dies.
 (Examples: bacterial dysentery, bubonic plague, cholera, salmonella food poisoning and
Contagious Diseases

contagious disease: a disease that can spread from one person to another by either direct or indirect means

(Examples: most childhood diseases - chicken pox, measles, mumps, whooping cough)

Read pp. 259-260

Viruses or bacteria cause most contagious diseases.

How Diseases are Spread

1. **Droplet infections**: travel suspended in water droplets in air, and usually affect the respiratory system. (examples: TB & diphtheria)
2. **Contact infections**: result from contact with a sore or lesion or the skin or mucous membrane of an infected person. (examples: impetigo, chicken pos, small pox)
3. **Contamination infections**: enter by food or water; often afflict the alimentary canal (examples: cholera, typhoid fever, food poisoning, TB can enter by milk)
4. **Wound infections**: enter through wounds in the body (examples: staphylococcus bacteria, tetanus [lockjaw])
5. **Vector-carried infections**: carried by insect or other arthropod bites or food contamination (flies, roaches, fleas, ticks, mosquitoes)
6. **Immune carriers**: people who spread disease without suffering the symptoms themselves (Typhoid Mary, see page 261) (examples: diphtheria, polio, scarlet fever, typhoid fever)

Defense Against Infectious Disease

The body's three lines of defense against disease:
I. Structural
II. Cellular
III. Chemical

I. **Structural Defenses**
 A. the skin barrier
 one of our most effective defenses
 physical barrier: bacteria & viruses cannot penetrate the tightly knitted cells of the skin
 harmless bacteria (that lives on the skin) protect the body by fighting off harmful bacteria
the acidity of the skin helps to ward off certain harmful bacteria
B. The mucous membrane barrier (see page 592)
equipped with cilia which sweep the pathogens to the throat where they can be expelled by a cough or swallowed and destroyed
sneezes clear pathogens from the nasal passages
C. the lysozymes & hydrochloric acid barrier
stomach's HCl acid kills most of the bacteria which enter by food
tears and perspiration contain lysozymes - kills bacteria by destroying their cell walls
tears also wash pathogens from the eyeballs into the tear ducts; tear ducts carry the germs to the nasal passages for disposal
D. microorganisms of the digestive system
intestinal floras live in our intestines and interfere with the growth of invading pathogens

II. Cellular defenses - second line of defense
A. elevated body temperature (fever)
most bacteria have a very narrow temperature range
B. the lymphatic system
the body's cells are surrounded by tissue fluid which originates in the plasma of the blood
this tissue fluid acts as a battlefield in the fight against invading microorganisms
C. phagocytic cells (pus)
two types of phagocytic cells
1. fixed - found in lymph nodes and certain organs (liver)
2. free - white blood cells (leucocytes)

III. Chemical defenses - the third line of defense
Antibodies: protein molecules made by the body and carried by the blood, which are able to combat specific pathogens or their toxins
Pathogens contain protein materials called antigens which are foreign to the body and these foreign materials stimulate the production of antibodies by our bodies.
Antibodies are produced in the spleen, lymph nodes, and thymus gland.
Antibodies react with antigens to neutralize them.

Read page 264

Immunity

immunity - the ability of the body to resist an infectious disease

I. Inborn immunity
II. Acquired immunity
 A. Active acquired immunity
 1. natural - by exposure to the disease
 2. artificial - by vaccines, toxoids, etc.
 B. Passive acquired immunity
 1. natural - from mother through placenta or milk
 2. artificial - from serum

Two types of immunities:
(1) inborn: (present at birth) because of inherited characteristics
 examples - you are immune to many of the diseases that affect fish, birds, and other animals because your body does not provide a suitable environment
(2) acquired: an immunity that results from having survived a disease or being appropriately inoculated
 a) active: when the person manufactures the antibodies himself
 b) passive: developed by being given antibodies from a person or animals

Active Acquired Immunity
1. Natural: the contract the disease and manufacture antibodies (examples - diphtheria, scarlet fever, measles, mumps)
2. Artificial: through the use of vaccines or toxoids
 vaccine: a weakened form of a pathogen sometimes produced by exposing the pathogen to x-ray
 toxoid: a weakened form of a toxin which has been produced by exposing the toxin to acids or heat

Passive Acquired Immunity
1. Natural: a mother who has an immunity to a specific disease can supply antibodies to an unborn infant through the placenta, or to a newborn infant by means of her milk
2. Artificial: when a person receives antibodies produced in other people or animals
 serum: made by removing the blood cells and most dissolved substances from the fluid portion of the blood, leaving specific antibodies
 use serum injections to prevent measles, mumps, and hepatitis
 also serum is sometimes used as a treatment for a patient who has been exposed to, or actually contracted, a disease such as diphtheria,
Chemotherapy: the use of chemical agents to treat or prevent disease

Although most people think of cancer treatment when they hear the word chemotherapy, most of the drugs used by doctors are chemotherapeutic. (examples: medicine for a cold, aspirin for headache)

They select chemicals that will injure or kill specific pathogens without damaging the host's body.

There may be side effects.

Use chemical agents derived mainly from plants.

two types of chemicals:
1. bactericidal - bacteria-killing (antibiotics, penicillin, streptomycin)
2. bacteriostatic - prevent multiplication of bacteria (sulfa drugs, salvarsan)

Read pages 266-267

Paul Ehrlich: founded chemotherapy and showed that certain dye injections cure certain tropical diseases. Found first treatment for syphilis after 605 unsuccessful tries.

Gerhard Domagk: in 1930 discovered the first of the sulfa drugs. He is best known for his work on a group of chemicals that destroys streptococcic bacteria.

Antibiotics: chemicals, produced by living organisms, that naturally kill or inhibit the growth of other organisms

Discovered by accident in 1929 by Alexander Fleming.

Fleming discovered Penicillium.

Read page 267

Antibiotics are substances produced by bacteria, mold, and certain other organisms.

Antibiotics cannot kill viruses.

Disorders

disorder: any infliction which is not caused by a pathogen
three major types of disorders:

1. **Inherited disorders**: either the direct result of an inherited gene (examples: hemophilia, PKU, sickle-cell anemia) or an inherited tendency for a disorder (example: diabetes mellitus).

2. **Injuries**: disorders caused by physical damage (examples: bruise, minor cut, loss of leg or eye, burn, broken bones, sprains)

3. **Organic disorders**: can have various causes
 - deficiency disease - improper nourishment such as lack of vitamin or mineral
 - chemical poisoning & radiation sickness - exposure to various environmental factors (examples: strokes, tumors, ulcers, blood clots)

Tumors

tumors: an abnormal growth of a cell mass

types of tumors:
1. **benign**: when the growth is slow and localized (examples: moles, warts, certain birthmarks)
2. **malignant**: when the growth is rapid and chaotic (often called cancer)

To diagnose: doctor performs a **biopsy** - removes a sample of the tumor tissue and sends it to a pathologist

pathologist: a specialist in diseased tissue

Read pages 268-269

Cancer

Cancer is a condition in which normally dividing cells become uncontrollable and cannot stop reproducing as they should. This results in too numerous, malformed, and nonfunctional cells accumulating in tissue.

Ways cancer cells differ from normal body cells:
- larger nuclei
- more DNA
- bizarre appearance
- harmful functions
- often an abnormal chromosome number
- often they consume a specific nutrient or produce a toxic chemical
most common type of cancer is lung cancer
second most common type of cancer is colon cancer

possible causes of cancer:
1. carcinogens: cancer-causing chemicals (examples: chemical residue of smoking, saccharin, many insecticides, some food preservatives)
2. radiation: excessive exposure to ultraviolet rays in sunlight and x-rays (example: skin cancer)
3. viruses: in humans warts are the only tumors known to be produced by viruses
4. dietary deficiencies: such as a lack of vitamin B-17

seven danger signals of cancer:
1. unusual bleeding or discharge
2. a lump or thickening
3. a sore that does not heal
4. change in bowel or bladder habits
5. persistent hoarseness or cough
6. persistent indigestion or difficulty in swallowing
7. change in wart or mole

cancer treatments (KEY: early detection)
1. surgery
 to remove affected part
 leading method
 is successful if all cancer cells are removed
2. radiation
 use x-ray or emissions from radioactive isotopes to destroy cancer cells
 can cause tumors and side effects
3. chemotherapy
4. laetrile (vitamin B-17)

Aging & Death

Read pages 270-273

gerontology: the science of aging
clinical death: the absence of brain waves for 24-48 hours
EEG (electroencephalogram): an instrument that measures brain waves